
Comment on “Mechanical analog of temperature for the description of force distribution in
static granular packings”

Philip T. Metzger*
The KSC Applied Physics Laboratory, The John F. Kennedy Space Center, NASA YA-C3-E, Kennedy Space Center, Florida 32899, USA

(Received 11 September 2003; revised manuscript received 17 October 2003; published 4 May 2004)

It has been proposed by Ngan[Phys. Rev. E68, 011301(2003)] that the granular contact force distribution
may be analytically derived by minimizing the analog of a thermodynamic free energy, in this case consisting
of the total potential energy stored in the compressed contacts minus a particular form of entropy weighted by
a parameter. The parameter is identified as a mechanical temperature. I argue that the particular form of entropy
cannot be correct and as a result the proposed method produces increasingly errant results for increasing grain
rigidity. This trend is evidenced in Ngan’s published results and in other numerical simulations and
experiments.
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Ngan[1] recently proposed a functional minimization ap-
proach to derive the granular contact force probability distri-
bution. The method is different from the entropy maximiza-
tion approaches that have been proposed by others because it
explicitly accounts for the potential energy stored in the
compressed granular contacts. The previous methods had as-
sumed Shannon’s entropy for either the distributionPx of
contact force Cartesian componentsfx (wherex is a principal
stress axis) [2],

S= − kE
0

`

dfxPxsfxdln Pxsfxd, s1d

or the distributionP of contact force magnitudesf f3g,

S= − kE
0

`

dfPsfdln Psfd. s2d

In either case, the entropy was maximized subject to the
conservation of the number of contacts and the conservation
of stresssesd in the packing. This, along with other important
variations of the methods, predicted a distribution function.
It is the latter of these two entropies that Ngan adopts. In a
paper now in preparationf4g I show why both of these en-
tropies are incorrect, because the density of states in the rel-
evant phase space must be profoundly nonuniform, and it is
this nonuniformity which is the source of the unique shape of
the contact force distribution function in the region of weak
forces. In this Comment I will discuss the problem with the
entropy as it is relevant to Ngan’s hypothesis and show how
the problem is revealed in the published results.

The functional proposed by Ngan isF=U−uS where

U =E
0

`

dfPsfdWsfd s3d

is the internal energy of the packing and whereWsfd is the
work function for compression of a contact under normal

force f. Thus,U is an analog of the Helmholtz free energy
from thermodynamics and the parameteru is the proposed
mechanical analog of temperature. This hypothesis produces
interesting results because, for a Hertzian contact force law,
the predicted distribution function closely fits the numerical
simulation data both for 2D and, in the case of strong defor-
mations, for 3Dsat least to the statistical precision of the
numerical datad. My own work has focused on a theoretical
analysis of the case of perfect rigidity which is the limit in
which Ngan’s method is incorrect. I am not able to comment
on the region of large deformations, which I suspect is where
Ngan’s work makes its key contribution.

I. GAUSSIAN VERSUS EXPONENTIAL

In Ngan’s hypothesis the form of the tail depends upon
Wsfd, predicting for Hertzian contacts a Gaussian tail
,exps−bf2d in two dimensions(2D) or a nearly Gaussian
compressed exponential tail,exps−bf5/3d in 3D. This is in
substantial agreement with statements in a paper by O’Hern,
Langer, Liu, and Nagel(OLLN) [5], which Ngan cites. Be-
fore addressing the form of the entropy in Ngan’s hypothesis,
it is necessary to question whether Gaussian tails have really
been observed in static granular force distributions. I claim
that they have not, except for cases with very small numbers
of grains [6] or large deformations[7,8]. Five arguments
make this case.

First, the tail normally does not appear exponential(a
straight line on a semilogarithmic plot) until several mul-
tiples of the average value of force,kfl. This onset is appar-
ently dependent upon the dimensionality of the packing. For
example, Figs. 2 and 5 of Ref.[9] show the onset atf
<3kfl for 2D and f <2kfl for 3D. There may be other fac-
tors which hasten or delay the onset as well. A number of the
semilog plots in the published literature lack statistical pre-
cision for a sufficient range beyond the onset and thus may
appear Gaussian. This is because the eye tends to extrapolate
the curvature it sees just prior to the loss of precision. How-
ever, I have seen no case that is truly inconsistent with an
exponential tail beyond the reasonable range of onsets except*Electronic address: Philip.T.Metzger@nasa.gov
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when there are large deformations[7,8] or a very small num-
ber of grains[6]. On the other hand, there are numerous
examples which clearly show an exponential tail inconsistent
with a Gaussian or other curved form. These examples in-
clude 2D frictional simulations using contact dynamics(CD)
and molecular dynamics[9,10]; 3D frictional simulations us-
ing CD [9], a Hertzian contact law[11], and a Hookean
contact law[11,12]; 3D frictionless simulations using two
versions of the Lennard-Jones potential[13]; 3D frictional
experiments [14]; and 3D frictionless experiments with
emulsions[7].

Second, the paper by OLLN claimed that 3D frictionless
static packings with a harmonic potential produce a Gaussian
tail [5]. The thermal argument predicting this tail was not
correctly applied to static packings. The density of states of a
thermal ensemble and the density of states of a static packing
ensemble are organized by two mutually exclusive prin-
ciples: one by the conservation of energy and momentum
with respect to time, the other by the conservation of forces
with respect to several spatial dimensions. In the transition as
the temperatureT→0, a packing does not become static until
it locates one of the relatively rare locations in phase space
that satisfy the highly organizing static equilibrium require-
ments. There is no basis to assume that the density of states,
or the potential energy distribution representing it, will have
the same form after undergoing this self-organizing transi-
tion.

Third, the empirical data from OLLN’s paper[5] do not
contradict the existence of an exponential tail, either. Their
two Figs. 3(a) and 3(b) represent two types of ensemble av-
erages. In the first, an exponential tail onsetting atf <3kfl
fits arguably better than OLLN’s proposed Gaussian over the
same region[15]. In the second, the tail is clearly exponen-
tial with an onset atf <2kfl. For the harmonic potential in
which f =Kx, renormalizing the force scale of a packing is
equivalent to renormalizing its spatial scale. Hence, the first
ensemble can be interpreted as all possible packing geom-
etries compressed to achieve the same average force at the
expense of different packing fractions. The second ensemble
is the set of all possible packing geometries compressed to
achieve the same packing fraction but at the expense of dif-
ferent average forces. Arguably it is the latter ensemble av-
erage, not the former, which represents the self-averaging of
a much larger packing. This is because locally averaged
force fluctuations do occur in large packings(because the
spatial distribution of forces is dominated by force chains
and is therefore very heterogeneous), whereas the mean off-
set in OLLN’s Fig. 2(b) implies that locally averaged pack-
ing fraction fluctuations become relatively small in an in-
creasingly large packing. Hence, this implies that an
exponential onset in very large, frictionless, 2D packings
ought to occur closer tof <2kfl, which is in agreement with
the other data cited above. However, regardless of which
ensemble average is the “correct” one, both are at least con-
sistent with an exponential tail. I believe this conclusion is in
better agreement with the statements found in the follow-on
full-length paper by O’Hern, Silbert, Liu, and Nagel[16].

Fourth, a simple argument can prove that, for frictionless
packings in the limit of small deformations, the force distri-

butioncannotbe a functional ofWsfd. Because a frictionless
packing is isostatic[17], all the forces can be derived deter-
ministically from the geometry of the contact network and
the imposed boundary loads, alone. Therefore, the only role
thatWsfd can play is by helping to decide what the geometry
of the contact network shall be. IfWsfd is relatively soft so
that deformations are large, then the geometry of the contact
network will be perturbed significantly, and thenWsfd may
indeed affect the resulting forces. However, in the limit when
the deformations become vanishingly small, then the geom-
etry of the contact network becomes independent of the form
of Wsfd and the contact forces also become independent of
the form ofWsfd. Therefore, the force distributions resulting
from every Wsfd must approach a universal form in this
limit.

Fifth, Bouchaud’s argument[18] with regard to theq
model persuasively explains the universal form of the tail.
He shows that the sufficient condition for an exponential tail
is merely that some grains be allowed to tip all of their loads
into one contact, which allows arbitrarily large forces to ac-
cumulate along particular force chains. This argument ap-
plies to all cohesionless granular media regardless ofWsfd,
except for cases where the grains cannot freely tip. We may
draw an important inference: when deformations become
large, the formation of additional contacts increases the sta-
bility of the grains, hence allowing the forces to be more
evenly distributed through space[8]. This may erode the
exponential tail so that it transits to a more rapidly decreas-
ing form [19].

II. THE ROLE OF THE ENTROPY

These arguments do not imply that Ngan’s free-energy
hypothesis is necessarily incorrect.Wsfd is a measure of de-
formation, which is the relevant parameter when the tail be-
comes nonexponential. The hypothesis does produce excel-
lent results in the case of large deformations. The tail of the
predicted distribution also becomes steeper and more curved
as the deformations increase, thus matching the observed
trend [7,8]. However, it can be seen in Ngan’s 3D results,
Fig. (7), that the analytical predictions do not fit the simula-
tion data for the 3D case with the least hydrostatic pressure
applied to the packing, i.e., the case with the least grain
deformation. In fact, there is an unmistakable trend that with
smaller pressures the predicted tail is increasingly distant
from the simulation data which become increasingly consis-
tent with an exponential tail[21]. It is possible with just a
small change in Ngan’s hypothesis to make the predicted tail
follow the trend toward an exponential. This could be done
by modifying the definition of the mechanical temperatureu
so thatk remains constant andu~k−1. Then, the influence of
Wsfd would vanish where the isostatic argument says that it
should, in the limit where deformations are small.

However, as shown in Ngan’s Figs.(1) and (2), straight-
ening the tail would raise a secondary but more fundamental
problem because it would produce the incorrect features in
the region of weak forces. Then, because these features affect
the average value of the distribution, the straightened tail
would have the wrong exponential decay constant,b=kfl
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instead ofb<1.6kfl. Like the exponential tail, these weak-
force features are so universal that they, too, are most likely
the result of some fundamental, organizational behavior in
granular media. They are the small peak near the average
value of force(or a plateau, or at least an abrupt change in
slope in cases of severely anisotropic stress[22]) and the
nonzero probability density at zero force.

This secondary problem can be related to the Shannon’s
entropy maximization hypothesis of Kruyt and Rothenburg
(KR) [3]. If Ngan’s U→0 with a nonvanishingk as I have
suggested, then the functionalF in Eq. (3) reduces to the
entropy term alone. Minimizing this is KR’s method but with
frictional grains. If we took KR’s prediction in the limit as
the Coulomb coefficient of friction vanishes,m→0, then it,
too, becomes a purely exponential distribution, contrary to
published results in the region of weak forces for frictionless
packings[1,7,13].

The problem lies with Shannon’s entropy because of its
inherent implication that all possible sets of contact forces
are equally probable, meaning that the density of states in the
phase space with coordinateshf iui =1, . . . ,Nj is uniformly
populated over the entire accessible region. The accessible
region is implied by the use of the Lagrange multipliers to be
all states where the average force per contact is correct, or in
the case of Ref.[3] all states where the volumetrically aver-
aged stresses match the externally applied stress tensor. To
be more accurate, the Shannon’s entropy implies that any
nonuniformity in the accessible region will beunbiasedwith
respect to the distribution of coordinates, so that the weaker
forces are not left out by the nonuniformities any more often
than are the stronger forces. In granular packings this as-
sumption is fundamentally incorrect because it neglects the
most important organizing feature of granular packings: the
requirement that the grains be stable. There is no analogous
requirement in classical thermal systems, and it turns out that
this requirement biases the density of states against weaker
forces.

An explanation of the bias begins by noting that any two
contact forces on the same grain are strongly correlated, in-
creasingly so as the contacts are further away from each
other toward opposite sides of the grain[11]. For simplicity
this Comment must illustrate how the correlation affects the
density of states using only a special case, allowing the
reader to draw the connections to the general case. For an
isotropic packing of frictionless 2D grains, consider one
grain which has two of its contacts exactly opposite one an-
other,c1=0 andc2=p as shown in Fig. 1. The forcef1 is
clearly related tof3, but not generally equal to it because of
the contact forcesf2 and f4 located inp /3,c1,2p /3 and
4p /3,c4,5p /3, respectively. Note that steric exclusion
keeps the contacts arranged fairly predictably around a grain,
which prevents the statistically averaged general case from
deviating too far from this special case. Static equilibrium
requires

f2 sinc2 = − f4 sinc4,
s4d

f1 = f3 − G,

where

G = f2 cosc2 + f4 cosc4 s5d

is the difference betweenf1 and f3. ThenG=J−1f4,

J−1 = cosc4 − cosc2
sinc4

sinc2
. s6d

Neglecting that this is a special casesfor illustrative simplic-
ityd, we assume that the distribution off4 is representative of
all the forces in the packing. These have a distributionPfsfd,
which we want to derive. By changing variables the distri-
bution of G in terms ofPf is,

PGsGd =E
p/3

2p/3

dc2E
4p/3

5p/3

dc4uJuPfsG Jd, s7d

whereJ is identified as the Jacobian. All we know aboutPf
is that it is zero for negative argumentsstensile forcesd, but
positive valued and normalized for positive arguments. As-
suming it is a continuous function its normalization implies
that it has a bounded tail. Over the range of integration,J has
odd symmetry in the sense thatJsc2,c4d=−Jsp−c2,3p
−c4d. Hence,PGsGd must be an even function which is posi-
tive valued over −̀ ,G,`, having a bounded tail in both
extremes. We cannot solve the distribution off1 by directly
changing variables fromsG, f3d to sf1, f3d because the pairs
are not statistically independent and we do not know their
joint probability distributions. However, we know that the
only stable configurations of this grain are those in which
Gø f3 because of Eq.s4d. We can therefore calculate the
proportions of the volume of phase space that include only
the stable configurations of this grain with a particular value
of f3. Since there are two equations of stability, there are
only two degrees of freedom in the force dimensions. Inte-
grating across only one of these to find the size of stable
space as a function of the other,

Vsf3d ~E E d2cE
0

`

df4 Qsf1dPfsf4d

~ E
−`

`

dG Q sf3 − GdPGsGd ~ E
−`

f3
dG PGsGd, s8d

whereQ is the Heavisidesunit stepd function. Hence,V is a
monotonically increasing function off3 which has a finite

FIG. 1. Special case to illustrate why grains with below-average
forces correspond to fewer stable locations in phase space than do
grains with average forces.
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value at f3=0. This illustrates that the volume of the stable
regions in phase space is biased against weaker forces, but is
not vanishing for zero force. Neglecting that this is a special
case, thePf corresponding to the maximum volume of stable
phase space is, therefore,

Pfsfd = e−bfE
−`

f

dG PGsGd, s9d

which is a recursion equation inPf through Eq.s7d. Thus, the
relative slope of the exponential factor and the integral will
determine the behavior ofPf in the region of weak forces,
and this provides the mechanism to explain variations in that
region as a function of the anisotropy of the packingf22g.

Because of the bias against weak forces in stable phase
space, the Shannon’s entropy adopted by Ngan and others is
not correct and this explains my claim why Ngan’s predicted
form for the case of vanishing deformations cannot fit both
the tail and the region of weak forces for any choice ofu and

k. If we could define the entropy so that it accommodates the
nonuniform density of states, then perhaps a particular
choice ofu andk can fit both the tail and the region of weak
forces even in the low-deformation limit. However, in the
case of very deformable grains where Ngan’s hypothesis
works best, the principal role of the entropy term seems to be
that it injects a logarithm into the equations. Whether or not
we will ever deduce a correct entropy maximization method
for the case of perfect rigidity, it is safe to say that the actual
form of the entropy with the relevant Lagrange multipliers
will still contain a logarithm, so the applicability of Ngan’s
work in the large deformation limit is still an open and in-
teresting question.
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